AGA KHAN UNIVERSITY EXAMINATION BOARD SECONDARY SCHOOL CERTIFICATE

CLASS X

MODEL EXAMINATION PAPER 2023 AND ONWARDS

Mathematics Paper II

Time: 1 hour 40 minutes Marks: 30

INSTRUCTIONS

carefully. Please read the following instructions carefully

Check your name and school information. Sign if it is accurate. 1.

> I agree that this is my name and school. Candidate's Signature

RUBRIC

- 2. There are NINE questions. Answer ALL questions. Choices are specified inside the paper.
- 3. When answering the questions:

Read each question carefully.

Use a black pointer to write your answers. DO NOT write your answers in pencil.

Use a black pencil for diagrams. DO NOT use coloured pencils.

DO NOT use staples, paper clips, glue, correcting fluid or ink erasers.

Complete your answer in the allocated space only. DO NOT write outside the answer box.

- 4. The marks for the questions are shown in brackets ().
- A formulae list is provided on page 2. You may refer to it during the paper, if you wish. 5.
- 6. You may use a simple calculator if you wish.

Aga Khan University Examination Board

List of Formulae Mathematics X

Note:

- All symbols used in the formulae have their usual meaning.
- The same formulae will be provided in the annual and re-sit examinations.

Basic Statistics

$$\overline{X} = \frac{\sum x}{n}$$

$$\overline{X} = \frac{\sum fx}{n} \text{ or } \overline{X} = \frac{\sum fx}{\sum f}$$

$$Median = l + \frac{1}{f} \left(\frac{n}{2} - c\right) \times h$$

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$\sigma^2 = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$$

Algebraic Manipulation

$$HCF \times LCM = p(x) \times q(x)$$

Linear Graphs and their Applications

1 mile =
$$\frac{8}{5}$$
 km 1 Hectare = 2.471 Acres ${}^{\circ}F = \frac{9}{5} \times {}^{\circ}C + 32$

Quadratic Equations

$$ax^{2} + bx + c = 0, \ a \neq 0$$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ Disc = $b^{2} - 4ac$

Introduction to Coordinate Geometry

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Introduction to Trigonometry

$$1^{\circ} = \frac{\pi}{180} \operatorname{rad}, \ 1 \operatorname{rad} = \left(\frac{180}{\pi}\right)^{\circ} \qquad A = \frac{1}{2}r^{2}\theta \qquad \qquad \sin^{2}\theta + \cos^{2}\theta = 1$$

$$1 = r\theta \qquad \qquad 1 + \tan^{2}\theta = \sec^{2}\theta \qquad \qquad 1 + \cot^{2}\theta = \csc^{2}\theta$$

Algebraic Formulae

Tagestate Formula:
$$(a-b)^2 = a^2 - 2ab + b^2 \qquad (a+b)^2 = a^2 + 2ab + b^2 \qquad a^2 - b^2 = (a+b)(a-b)$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \qquad (a+b)^2 - (a-b)^2 = 4ab \qquad a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

$$(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) \qquad (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \qquad a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

Page 3 of 16

Q.1. (Total 3 Marks)

The given data represent the distance covered by 30 cyclists in a race.

Distance (km)	Frequency	Class Width	Frequency Density
$0 \le x < 4$	7	4	1.75
$4 \le x < 10$ $10 \le x < 14$	3	3 6 0.5	
		4	2
$14 \le x < 22$	4	8	0.5
$22 \le x < 32$	8	10	0.8

Draw a histogram for the given data.

Space for Diagram

Hodel by a r
*Ot

PLEASE TURN OVER THE PAGE

Page	4 of 16
Q.2.	(ATTEMPT EITHER PART a OR PART b OF Q.2.) (Total 4 Marks)
a.	Simplify the expression $a(a^2x^2 - 2axb + b^2) \div a(a^2x^2 - b^2)$ to express as $\frac{ax - b}{ax + b}$.
	28 2023 ing
	Those test
	"Ogel ing
	1 CO

Mathematics Model Paper X

Page 5 of 16		
	(ATTEMP	T EITHER PART a OR PART b OF Q.2.)
b. Complet	e the solution of the s	square root of an algebraic expression by filling the space provided
		$-8x +$
	•••••	$36x^4 - \dots x^3 + \dots x^2 - 16x + \dots$
	•••••	•••••
	$12x^2x$	$-96x^3 + \dots x^2$
	x	$\mp 96x^3 \pmx^2$
	$12x^2 - 16x + 1$	$\times 12x^2 - \dots x + \dots$
		$\frac{16x + \dots }{6}$

 1460	
 10%	

Page 6 of 16
(ATTEMPT EITHER PART a OR PART b OF Q.3.)
Q.3. (Total 3 Marks)
a. Given that $k = k\sqrt{x+1} + k^2\sqrt{x+1}$, where $k > 0$. Show, by working, that the given equation
reduces to $x+1 = \left(\frac{1}{k+1}\right)^2$.
$\left(\frac{k+1}{k+1}\right).$
A Poly
b. It is given that $ x-9 +5>5$ and x is an integer. Find the values of x, which satisfies the given
inequality.
*(0)

Page 7 of 16	
Q.4. (Total 3 Marks)	
Eight years ago, Mr Salman was 10 times as old as his neighbour. If the present age of Mr Salman and his neighbour is <i>x</i> and <i>y</i> respectively, then find an	
i. expression of Mr Salman and his neighbour's age eight years ago.	
ii. equation connecting x and y with the help of the given condition.	
DY 600 A	
Model hinds	
*Oi	
PLEASE TURN OVER THE PAGE	

Page 8 of 16	
Q.5. Find the values of x for the equation $3x^2 - 4x + 2 = 0$, using quadratic formula.	(Total 3 Marks)
	H
Q.6. If the midpoint of $P_1(x, -3)$ and $P_2(y, 7)$ is (a,b) , then show that $a-b=\frac{1}{2}(x+y-4)$	(Total 3 Marks)
2 1 the marpoint of 11(0, 0) and 12(0, 1) as (a, 0), and 12 (0, 1), and 12 (

Page	9 of 1	16	
		(ATTEMPT EITHER PART a OR PART b OF Q.7.)	
Q.7.			(Total 4 Marks)
a.		ne diameter of a circle is 10 cm and the central angle measured of a sector of the then find the	e circle is
	i.	radius of the circle.	(1 Mark)
	ii.	area of the sector.	(3 Marks)
		a or only	
		NT POR E COM	
		Noge Schill,	
		PLEASE TURN OVER THE PAGE	

(ATTEMPT EITHER PART a OR PART b OF Q.7.)

b. In the given diagram, *ABE* and *CDE* are two right-angled triangles. Calculate the length of *CE*.

NOT TO SCALE

Hoge Stills

Page 11 of 16	
(ATTEMPT EITHER PART a OR PART b OF Q.8.)	
Q.8.	Γotal 4 Marks)
a. The given circle having centre Q has a radius of 8 units. Two equal chords PQ and Q length Q not to Q	
i. State, in terms of l , the length of TS .	(1 Mark)
Dr. Boy &	
- Jeins	
ii. Hence, find the value of l when $OT = 5$ units.	(3 Marks)
40,	
PLEASE TURN OVER THE PAGE Mathematics Model Paper X	

(ATTEMPT EITHER PART a OR PART b OF Q.8.)

b. In the diagram, O is the centre of the circle and it is given that $\angle OSP = 23^{\circ}$ and PS = PR.

NOT TO SCALE

i. State the value of $\angle OPS$.

(1 Mark)

ii. Find the value of $\angle SOR$. Show all the necessary working with a valid reason. (3 Marks)

Please use this page for rough work

Model Lind Fales Solding Only

Please use this page for rough work

My Feaching Learning Only Model hinds learning only

Please use this page for rough work

Model Paper 2023 ind Only