AGA KHAN UNIVERSITY EXAMINATION BOARD HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XI

MODEL EXAMINATION PAPER 2023 AND ONWARDS

Mathematics Paper II

Time: 1 hour and 30 minutes Marks: 50

INSTRUCTIONS

Please read the following instructions carefully

carefully. Check your name and school information. Sign if it is accurate. 1.

> I agree that this is my name and school. Candidate's Signature

RUBRIC

- 2. There are EIGHT questions. Answer ALL questions. Choices are specified inside the paper.
- 3. When answering the questions:

Read each question carefully.

Use a black pointer to write your answers. DO NOT write your answers in pencil.

Use a black pencil for diagrams. DO NOT use coloured pencils.

DO NOT use staples, paper clips, glue, correcting fluid or ink erasers.

Complete your answer in the allocated space only. DO NOT write outside the answer box.

- 4. The marks for the questions are shown in brackets ().
- 5. A formulae list is provided on page 2 and 3. You may refer to it during the paper, if you wish.
- 6. You may use a scientific calculator if you wish.

Aga Khan University Examination Board

List of Formulae for Mathematics XI

Note:

- All symbols used in the formulae have their usual meaning.
- The same formulae will be provided in the annual and re-sit examinations.

Complex Numbers

$$|z| = \sqrt{a^2 + b^2}$$

Matrices and Determinants

$$A_{ij} = (-1)^{i+j} M_{ij}$$

$$AdjA = (A_{ij})^t$$

$$A^{-1} = \frac{1}{|A|} A djA$$

$A_{ij} = (-1)^{i+j} M_{ij}$ $AdjA = (A_{ij})^t$ Sequence & Series and Miscellaneous Series

$$a_n = a_1 + (n-1)d$$

$$A = \frac{a+b}{2}$$

$$S_n = \frac{n}{2} (2a_1 + (n-1)d)$$

$$a_n = a_1 r^{n-1}$$

$$G = \pm \sqrt{ak}$$

$$H = \frac{2ab}{a+b}$$

$$S_n = \frac{a_1(1-r^n)}{1-r}$$
, if $|r| < 1$

$$A = \frac{a+b}{2}$$

$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$

$$G = \pm \sqrt{ab}$$

$$H = \frac{2ab}{a+b}$$

$$S_n = \frac{a_1(r^n - 1)}{r - 1}, \text{ if } |r| > 1$$

$$S_{\infty} = \frac{a_1}{1 - r}, \text{ where } |r| < 1$$

$$S_{\infty} = \frac{a_1}{1-r}$$
, where $|r| <$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Permutations, Combinations and Probability

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$

$${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \qquad P(A \mid B) = \frac{P(A \cap B)}{P(B)} \qquad P(A \cap B) = P(A) \times P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A) \times P(B)$$

Binomial Theorem and Mathematical Induction

$$(a+x)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}x + \binom{n}{2}a^{n-2}x^2 + \binom{n}{3}a^{n-3}x^3 + \dots + \binom{n}{n-1}a^1x^{n-1} + x^n$$
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^r + \dots$$

$$T_{r+1} = \binom{n}{r} a^{n-r} x^r$$

Quadratic Equation

$$x^2 - Sx + P = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = b^2 - 4ac$$

Introduction to Trigonometry and Trigonometric Identities

$$l = r\theta$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \qquad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$\frac{a-b}{a+b} = \frac{\tan\frac{\alpha-\beta}{2}}{\tan\frac{\alpha+\beta}{2}}$$

$$\cos P - \cos Q = -2\sin\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\sin P - \sin Q = 2\cos\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\cos P + \cos Q = 2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}$$

$$\sin P + \sin Q = 2\sin \frac{P+Q}{2}\cos \frac{P-Q}{2}$$

$$\sin\frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

$$\tan\frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

$$\cos\frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

$$\Delta = \frac{1}{2}bc\sin\alpha = \frac{1}{2}ac\sin\beta = \frac{1}{2}ab\sin\gamma$$

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \qquad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} \qquad \sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}} \qquad \tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \qquad a^2 = b^2 + c^2 - 2bc \cos \alpha \qquad \frac{a - b}{a + b} = \frac{\tan \frac{\alpha - \beta}{2}}{\tan \frac{\alpha + \beta}{2}}$$

$$\cos P - \cos Q = -2 \sin \frac{P + Q}{2} \sin \frac{P - Q}{2} \qquad \sin P - \sin Q = 2 \cos \frac{P + Q}{2} \sin \frac{P - Q}{2}$$

$$\cos P + \cos Q = 2 \cos \frac{P + Q}{2} \cos \frac{P - Q}{2} \qquad \sin P + \sin Q = 2 \sin \frac{P + Q}{2} \cos \frac{P - Q}{2}$$

$$\sin \frac{\alpha}{2} = \sqrt{\frac{(s - b)(s - c)}{bc}} \qquad \tan \frac{\alpha}{2} = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}$$

$$\cos \frac{\alpha}{2} = \sqrt{\frac{s(s - a)}{bc}}$$

$$\Delta = \frac{1}{2}bc \sin \alpha = \frac{1}{2}ac \sin \beta = \frac{1}{2}ab \sin \gamma \qquad \Delta = \sqrt{s(s - a)(s - b)(s - c)}$$

$$\Delta = \frac{c^2 \sin \alpha \sin \beta}{2 \sin \gamma} = \frac{b^2 \sin \alpha \sin \gamma}{2 \sin \beta} = \frac{a^2 \sin \beta \sin \gamma}{2 \sin \alpha} \qquad R = \frac{a}{2 \sin \alpha} = \frac{b}{2 \sin \beta} = \frac{c}{2 \sin \gamma}$$

$$R = \frac{a}{2\sin\alpha} = \frac{b}{2\sin\beta} = \frac{c}{2\sin\beta}$$

$$2\sin \gamma \qquad 2\sin \beta \qquad 2\sin \alpha \qquad 2\sin \alpha$$

$$r_1 = \frac{\Delta}{s-a}, \ r_2 = \frac{\Delta}{s-b} \text{ and } r_3 = \frac{\Delta}{s-c} \qquad r = \frac{\Delta}{s} \qquad R = \frac{abc}{4\Delta}$$

$$r = \frac{\Delta}{s}$$

$$R = \frac{abc}{4\Delta}$$

Graphs of Trigonometric Functions, Inverse Trigonometric Functions and Solution of **Trigonometric Equations**

$$\sin^{-1} A \pm \sin^{-1} B = \sin^{-1} \left(A \sqrt{1 - B^2} \pm B \sqrt{1 - A^2} \right) \qquad \cos^{-1} A \pm \cos^{-1} B = \cos^{-1} \left(A B \mp \sqrt{1 - A^2} \right)$$

$$\cos^{-1} A \pm \cos^{-1} B = \cos^{-1} (AB \mp \sqrt{1 - 1})$$

$$\tan^{-1} A \pm \tan^{-1} B = \tan^{-1} \left(\frac{A \pm B}{1 \mp AB} \right)$$

Page 4 of 16
Q.1. (Total 4 Marks)
For the simultaneous linear equations with complex coefficients $ix - \sqrt{-4}y = \frac{8}{i}$ and $\frac{x}{i} - iy = i^3$, show that the value of y is real.
- Liber Struit
At Paral
- 100 CHILD
1 CO

Page 5 of 16
Q.2. (Total 6 Marks)
The matrix form of system of simultaneous linear equations $x + 3y + 3z = 1$, $y + 2z = 2$, and $2x + y = 3$ $ \begin{bmatrix} 1 & 3 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} $ Find the value of the matrix $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ using matrix inversion method.
LB 202 indo
W 6.0 8 6.0
Modeling
PLEASE TURN OVER THE PAGE

Page	6 of 16	
Q.3.		(Total 6 Marks)
a.	Convert 0.481481481481481 into an equivalent fraction.	(3 Marks)
		<i>H</i>
	23.10	
ı 	42,036,276	
ı.		(2-2-4-X
b.	Find the sum of $2 \times 1^3 + 2 \times 2^3 + 2 \times 3^3 + 2 \times 4^3 + \dots + 2 \times 50^3$.	(3 Marks)
	40,	
 I		
ı 		
· —		

Page 7 of 16	
Q.4.	(Total 6 Marks)
a. Prove that $\binom{n}{n-1} = n$, where <i>n</i> is a positive integer.	(2 Marks)
b. If $\binom{n}{3} = 8 \binom{n-1}{n-2}$, then find the value of n .	(4 Marks)
- Hogeling	
PLEASE TURN OVER THE PAGE	

Page 8 of 16	
Q.5.	(Total 6 Marks)
In the binomial expansion of $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^n$,	
a. show that the term is independent of x for $r = \frac{n}{2}$	(3 Marks)
	4
Mr 6068	
b. hence, find the value of n and of k if the term independent of x is given by kC_3 .	(3 Marks)
(Note : $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$ and the formula for r^{th} term is $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$, have their usual meanings.)	

Page	9 of 16	
Q.6.	(ATTEMPT EITHER PART a OR PART b OF Q.6.)	(Total 6 Marks)
a.	Find the values of x for the equation $2(x^2 + 2x) + \sqrt{x^2 + 2x + 5} = 0$	(6 Marks)
	(Note: Verification not required)	
b.	A shopkeeper sold <i>x</i> cartons of dairy milk for Rs 10,500. If he had 5 more cartons amount of money he would have received by selling all the cartons for Rs 50 less	
	With reference to the given situation,	
	i. state an expression for the discounted cost of each carton.	(2 Marks)
	ii. show that the equation represents the total cost as $(x+5)(10,500-50x)=1$	0,500 x. (2 Marks)
	iii. find x , which is the number of cartons.	(2 Marks)
	Dr. Box &	
	96,110	
	Mo Sch	
	*O,	
	PLEASE TURN OVER THE PAGE	

Page 1	10 of 16	
	(ATTEMPT EITHER ANY TWO OF a, b AND c FOR Q.7	7.)
Q.7.		(Total 10 Marks)
a.	Show that $\sqrt{\frac{1}{r}} \times \sqrt{\frac{1}{r_1}} \times \sqrt{\frac{1}{r_2}} \times \sqrt{\frac{1}{r_3}} = \frac{1}{sr}$	(5 Marks)
		VIA
	LB 120 strike	
	PL 698	
	Eloge, illo	
	For a real number α , $1 + \cot^2(-\alpha) = \csc^2(-\alpha)$. Prove this statement using theorem.	Pythagoras (5 Marks)

Page 11 of 16	
c. If the measurements of a triangle PQR is such that $\angle P = 35.3^{\circ}$, $\angle P + \angle Q = 80.5^{\circ}$ and $PR = 421$ units, then find the	
i. value of the angles $\angle Q$ and $\angle R$.	(2 Marks)
	(2 Marles)
ii. lengths of the remaining sides.	(3 Marks)
EB of Delicition	
42036018	
Piel Co	
"loo chili	
100	
KOL	
PLEASE TURN OVER THE PAGE	

Q.8. (Total 6 Marks)

Complete the given table and draw the graph of $y = \tan x$.

х	0	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
$y = \tan x$													

END OF PAPER

Model Linds Teathing Only

Model Fales Jossins Only Model Fales Jeaning Only

Model Linds Teathing Outh

Model Lind Fales Sold ind Only