AGA KHAN UNIVERSITY EXAMINATION BOARD SECONDARY SCHOOL CERTIFICATE

CLASS X

ANNUAL EXAMINATIONS (THEORY) 2024

Mathematics Paper II

Time: 1 hour 40 minutes Marks: 30

INSTRUCTIONS

Please read the following instructions carefully.

1. Check your name and school information. Sign if it is accurate.

I agree that this is my name and school. Candidate's Signature

RUBRIC

- 2. There are NINE questions. Answer ALL questions. Choices are specified inside the paper.
- 3. When answering the questions:

Read each question carefully.

Use a black pointer to write your answers. DO NOT write your answers in pencil.

Use a black pencil for diagrams. DO NOT use coloured pencils.

DO NOT use staples, paper clips, glue, correcting fluid or ink erasers.

Complete your answer in the allocated space only. DO NOT write outside the answer box.

- 4. The marks for the questions are shown in brackets ().
- 5. A formulae list is provided on page 2. You may refer to it during the paper, if you wish.
- 6. You may use a simple calculator if you wish.

List of Formulae

Note:

All symbols used in the formulae have their usual meaning.

Basic Statistics

$$\overline{X} = \frac{\sum x}{n}$$

$$\overline{X} = \frac{\sum fx}{n} \text{ or } \overline{X} = \frac{\sum fx}{\sum f}$$

Median =
$$l + \frac{1}{f} \left(\frac{n}{2} - c \right) \times h$$

Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right) \times h$

variance =
$$\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

Standard deviation =
$$\sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$$

Algebraic Manipulation

$$HCF \times LCM = p(x) \times q(x)$$

Linear Graphs and their Applications

1 mile =
$$\frac{8}{5}$$
 km

$$^{\circ}F = \frac{9}{5} \times ^{\circ}C + 32$$

Quadratic Equations

$$ax^2 + bx + c = 0, \ a \neq 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$Disc = b^2 - 4ac$$

Introduction to Coordinate Geometry

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M.P = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Introduction to Trigonometry

$$1^{\circ} = \frac{\pi}{180} \text{ rad}, 1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$$

$$A = \frac{1}{2}r^2\theta$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$l = r\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Algebraic Formulae

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $a^2 - b^2 = (a+b)(a-b)$

$$a^2 - b^2 = (a+b)(a-b)$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(a+b)^2 - (a-b)^2 = 4ab$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \qquad (a+b)^2 - (a-b)^2 = 4ab \qquad a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

$$(a+b) + (a-b) = 2(a+b) - (a+b) =$$

 $(a+b+c)^2 - a^2 + b^2 + c^2 + 2ab + 2bc + 2ab$

$$b^3$$
 $a^3 +$

$$(a+b)^2 + (a-b)^2 = 2(a^2+b^2) (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Page	3	of	1	6

Q.1. (Total 3 Marks)

A company has been tracking the daily sales figures for their products over the last month. The figures are as follows: 492, 215, 384, 793, 523, 707, 821, 422, 930, 156, 361, 499, 682, 448, 291

Consider the given figures to complete the following table.

Class Interval	Class Boundary	Frequency	Cumulative Frequency
100 – 299			
300 – 499			
500 – 699		00,4	
700 – 899		6 0	
900 – 1099	7.0	~~~~~	
Total		9	

PLEASE TURN OVER THE PAGE

Find the least common multiple (LCM) of the polynomials $P(x) = 3x^3 - 27x$ and $Q(x) = x^2 - 6x + 9$		Page 4 of 16
Q.2. (Total 4 No. Find the least common multiple (LCM) of the polynomials $P(x) = 3x^3 - 27x$ and $Q(x) = x^2 - 6x + 9$ of the expression $x^4 + 4x^3 + 3ax^2 + 16x + 4a$ will become a perfect square.		(ATTEMPT EITHER PART a OR PART b OF Q.2.)
Q(x) = $x^2 - 6x + 9$ D. For what value of 'a' the expression $x^4 + 4x^3 + 3ax^2 + 16x + 4a$ will become a perfect square.	otal 4 Marks	
Authoriting Suning Printing Suning Su	quare.	b. For what value of 'a' the expression $x^4 + 4x^3 + 3ax^2 + 16x + 4a$ will become a perfect so
Kot escritos formos de la companya del companya de la companya del companya de la		
Kully eaching Falling White acting for the second		20 on
Kulling Sali		- LB in all of
KULING SCLING		The sales
KULING SCHINGS		Ctala
Hot Sact.		
		VIII/69CI
		KOK

Page 5 of 16

(ATTEMPT EITHER PART a OR PART b OF Q.3.)

Q.3. (Total 3 Marks)

a. Find the value of x for the given equation $\frac{5\sqrt{x}}{2} - \frac{7\sqrt{x}}{3} = \frac{7}{3}$

(Note: Verification is not required.)

b. Solve the inequality |2x-3| > 5 and illustrate the solution on the given number line.

KOL Sackillo

Page 6 of 16
Q.4. (Total 3 Marks)
Use algebraic method to find the values of x and y for the equations $x + 2y = 8$ and $2x + 2y = 16$.
-02h
(B) (D)
Q.5. (Total 3 Marks)
Find the discriminant of the equation $x^2 - x - 1 = 0$. Using the discriminant, state the nature of the roots.
4to 2to
DLU 69 CUIII.
40

Page 7 of 16	
Q.6.	(Total 3 Marks)
The midpoint of $P_1(x,-3)$ and $P_2(y,7)$ is (a,b) . Show that $a-b=\frac{1}{2}(x+y-4)$.	
20/0/14	
EB ions ind	
The ingression	
431.8	
KOL SSCHILLS	
bi. Ko	
40'	

	(ATTEMPT EITHER PART a OR PART b OF	Q.7.)
Q.7.		(Total 4 Mark
a.	The given diagram shows a circle having radius 6 cm and centre at O	
		NOT TO SCALE
	6 cm 120°	32/4
	If the sector subtends a central angle of 120°, then calculate the	0
	i. arc-length for the minor sector.	(2 Marks
	12 94	
	. 47-0	
	ii. area of the minor sector.	(1 Mark
	iii. arc-length of the major arc.	(1 Mark

(ATTEMPT EITHER PART a OR PART b OF Q.7.)

- b. Two ships A and B leave their harbour together and sail to south for x km. After reaching at point P,
 - ship A turns East and sails for 20 km to reach at point Q.
 - ship *B* turns West and sails for 15 km to reach at point R.

The route is shown in the given diagram.

distance between ship A and ship B when they reached at point Q and R respectively. (1 Mark)

If the shortest distance of ship B from point R to the harbour is 18 km, then find the

ii. shortest distance of ship A when it reached point Q to the harbour.	(3 Marks)
.0'	

PLEASE TURN OVER THE PAGE

Page	10	of	16
I usc	10	O1	10

(ATTEMPT EITHER PART a OR PART b OF Q.8.)

Q.8. (Total 4 Marks)

a. In the given circle with centre O, $\overline{BE} = 5$ cm and $\overline{OE} = \overline{OD} = 4$ cm.

NOT TO SCALE

ind only

i. Find the length of \overline{DC} and write a statement to justify your answer.

(2 Marks)

ii. Find the length of \overline{AB} and write a statement to justify your answer.

(2 Marks)

Page 11 of 16	
(ATTEMPT EITHER PART a OR PART b OF Q	2.8.)
b. In the given diagram a circle with centre <i>O</i> is shown. <i>PA</i> and <i>PB</i> are point <i>A</i> and <i>B</i> respectively.	tangents to the circle at
	NOT TO COAL F
A	NOT TO SCALE
8 cm	
State the value of i. $\angle OAP$ and justify your answer	(2 Marks)
DU Y SO	
ii. \overline{OB}	(1 Mark)
iii. \overline{AP}	(1 Mark)

PLEASE TURN OVER THE PAGE

Authoriting fraging by the state of the stat

Authoriting fraging by the state of the stat

