AGA KHAN UNIVERSITY EXAMINATION BOARD

SECONDARY SCHOOL CERTIFICATE

CLASS X

ANNUAL EXAMINATONS 2021

Mathematics

Time: 1 hour 40 minutes Marks: 50

INSTRUCTIONS

- 1. Read each question carefully.
- answer shee 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 50 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. The marks obtained on the 50 MCQs will be equated to the total marks of 75 for the theory examination results.
- 8. You may use a simple calculator if you wish.

Page 2 of 16

Use the given information to answer Q.1 and Q.2.

Class Interval	Frequency
50 - 59	7
60 - 69	16
70 - 79	24
80 - 89	13
90 - 99	10
Total	70

- 1. The cumulative frequency preceding the median class will be
 - A. 16
 - B. 23
 - C. 24
 - D. 47
- 2. The upper class boundary of the modal class is
 - A. 69.5
 - B. 70.5
 - C. 78.5
 - D. 79.5
- 3. For five observations, if $\sum X = 9$ and $\sum X^2 = 19$, then the variance will be
 - A. 0.56
 - B. 0.20
 - C. 0.75
 - D. 2.00

Page 3 of 16

4. The given pie chart shows the number of students together with their favourite fruits in a school.

What is the percentage of the students whose favourite fruit is orange?

- A. 11.1
- B. 18.2
- C. 22.2
- D. 40.0

Use the given information to answer Q.5 and Q.6.

The given data, in ascending order, represents the ages of people who visited a shop in a day.

9, 9, 10, 15, 17, 19, 23, 27, p, p, 32, 35, 35, 35, 37, 40, 40

- 5. If the median is 28, then the value of p is equal to
 - A. 56
 - B. 28
 - C. 18
 - D. 9
- 6. The mode of the data
 - A. is 28
 - B. is 35
 - C. is 40
 - D. cannot be determined
- 7. If $\frac{X}{Y} = \frac{a}{2}$ and $\overline{X} = \frac{a}{2}$, then the value of \overline{Y} is equal to
 - A. *a*
 - B. $\frac{a}{4}$
 - C. 0
 - D. 1

Page 4 of 16

- If $\frac{1}{a^2} \times (\text{variance of } x)$ is b, then the standard deviation of x will be
 - $a\sqrt{b}$. A.
 - \sqrt{ab} . B.
 - a^2b^2 . C.
 - a^4b^2 . D.
- $\sqrt{(x-4)(x+4)(x^2-16)}$ is equal to
 - A. x-4
 - x+4B.
- 10.
- The least common multiple of $x^4 a^4$, $x^2 a^2$ and $x^2 + a^2$ is equal to

 A. 1

 B. $x^2 + a^2$ C. $x^2 a^2$ D. $x^4 a^4$ The highest common factor of $(y-1)^2$, $(y+1)^2$ and $y^2 1$ is equal to

 A. 1

 B. y-1C. y+1D. $(y-1)^2(y+1)^2$ 11.
- On simplification of $\left(1-\frac{1}{x}\right) \div \frac{1}{x}$, we get 12.
 - A.
 - B. x-1

 - D. $\frac{1-x}{x^2}$

Page 5 of 16

- 13. On simplification of $2 \frac{(a+b)^2}{(a-b)(a+b)}$, we get
 - A.
 - B.
 - C. $\frac{a+3b}{a-b}$
 - D. $\frac{a-3b}{a-b}$
- The least common multiple of x-1 and x^2-2x+1 is
 - A. $(x-1)^2$.

 - B. $(x-1)^3$. C. (x-1)(x+1).
 - D. $(x-1)^2(x+1)$.
- If the highest common factor of $2kx^2$ and $3x^2 6x$ is 3x, then one of the values of k will be

 A. x-2B. xC. 6D. 3
- On simplification, $\frac{1}{1-x}$
- 17. If $2a = 5x^2y^4$, then the square root of $\frac{5}{2a}$ is equal to

 - $B. \qquad x^2 y^2$

 - D. xy^2

Page 6 of 16

- On solving the equation $3 = -\frac{3}{2}x$, the value of x will be
 - A. -2
 - B.
 - C. $\frac{9}{2}$
 - D. $-\frac{1}{2}$
- The solution of 7x 7 > -7 will be 19.
- 20.
- . oe $\{-1,1\}.$ The solution set of $\sqrt{x-\frac{1}{4}}=\frac{1}{2}$ will be $\{-1,1\}.$ $\{\frac{1}{4}\}.$ $\{\frac{1}{2}\}.$ $\{0,\frac{1}{4}\}.$ $\{0,\frac{1}{-1}\}.$
- 22. If $\sqrt{x} \sqrt{k} = \sqrt{k}$, then the value of $\frac{\sqrt{x}}{2}$ is equal to
 - A.
 - B. $\frac{\sqrt{2k}}{2}$ C. $\frac{\sqrt{k}}{2}$

 - D.

Page 7 of 16

- 23. Which of the following inequalities satisfies the solution set x < 1 or x > -1?
 - A. |8x| < 8
 - B. 8|x| > 8
 - C. |x| + 1 > 1
 - D. |x| + 1 < 1
- 24. If $\sqrt{x} 1 = 1$, then the value of x is equal to
 - A. 0
 - B. 2
 - C. ± 2
 - D. 4
- 25. For the given equations x-3y=9 and x+3y=15, the value of x will be
 - A. -6
 - B. -3
 - C. 12
 - D. 24
- 26. The coordinates of point H in the given graph is

- A. (-3,4).
- B. (4,-3).
- C. (3, -4).
- D. (-3, -4).

Page 8 of 16

Use the given graph to answer Q.27 and Q.28.

- 27. One of the points that lies on the given line is
 - A. (4,4).
 - B. (3,2).
 - C. (0, -1).
 - D. (-1,0).
- 28. If a point lies on the given line and its ordinate is -3, then the abscissa of the point will be
 - A. -3
 - B. -4
 - C. 2
 - D. 1
- 29. Which of the following options shows an ordered pair?
 - A. $(\{-1,-10\})$
 - B. $\{(-1,-10)\}$.
 - C. $\{-1, -10\}$.
 - D. (-1,-10).

Page 9 of 16

30. In the given triangle ABC, $\tan \phi$ is

- A. $\frac{a}{b}$
- B. $\frac{b}{a}$
- C. $\frac{b}{c}$
- D. $\frac{c}{b}$
- 31. In the given diagram, the length of arc AB is

- B. 4.5 m.
- C. 18 m.
- D. 20.25 m.

NOT TO SCALE

- 32. On simplification of $(\sec^2 \theta 1)\cot \theta$, we get
 - A. 1
 - B. $\tan \theta$
 - C. $\cot^3 \theta$
 - D. $\sin\theta\cos\theta$
- 33. The value of $\csc^2 45^\circ$ is
 - A. 2
 - B. $\frac{1}{2}$
 - C. $\frac{3}{4}$
 - D. $\frac{4}{3}$

Page 10 of 16

34. In the given triangle ABC, $\sin \theta$ is equal to

- A.
- B. \overline{AC}
- C.
- D.
- In the given triangle ABC, the length of AC is 35.

- 2 cm. A.
- B. 3.009 cm.
- C. 29.026 cm.
- D. 41 cm.
- If π radians is added to 180° , then the result, in radian, will be 36.
 - A. π
 - 2π B.
 - C. 180
 - D. 360

37. In a sector, if the ratio of arc length to the radius is 3:5, then its central angle

- is 2 radians. A.
- B. is 0.6 radians.
- C. is 1.67 radians.
- D. cannot be determined.

If $r^2 = \frac{15}{\theta}$, then the area of sector 38.

> mations 2021 (Note: Symbols have their usual meaning.)

- is 7.5 square units.
- B. is 15 square units.
- C. is 30 square units.
- D. cannot be determined.

39. The tangent of the angle is negative in

- I. second quadrant.
- II. third quadrant.
- III. fourth quadrant.
- A. I only
- II only B.
- C. I and III
- D. II and III

On simplification, the expression $\sqrt{2sec^2\theta - 2tan^2\theta}$ is equal to 40.

- $\sqrt{2} \left(\sec \theta \tan \theta \right)$ A.
- $2(\sec\theta \tan\theta)$ B.
- $\sqrt{2}$ C.
- D. 2

In the given right angled triangle DEF, if DE = 2EF, then the length of DF can be expressed as 41.

- A. DF = 3EF
- $(DF)^2 = 3(DE)^2$ B.
- C. DF = 2DE + EF
- $(DF)^2 = 4(EF)^2 + (EF)^2$ D.

Page 12 of 16

42. In the given diagram, O is the centre of the circle and RT and ST are the two tangents drawn to the circle.

If OR = x units and OT = (2x + 1) units, then $(RT)^2$ is equal to inations only

- $(2x+1)^2 x$. A.
- $(2x+1)^2 + x$. B.
- $(2x+1)^2-x^2$. C.
- D. $(2x+1)^2 + x^2$.

Use the given information to answer Q.43 and Q.44.

In the given diagram, O is the centre of the circle.

- The value of $\angle RSP$ 43.
 - is 35° A.
 - is 55° B.
 - C. is 70°
 - cannot be determined D.
- 44. The value of $2 \angle SQP$ is equal to
 - $70^{\rm o}$ A.
 - 110° B.
 - $2(70^{\circ})$ C.
 - $2(110^{\circ})$ D.

Page 13 of 16

- 45. If two circles touch each other externally and their radii are c and b, where c > b, then the distance between their centres is
 - A. b-c.
 - B. $\frac{b-c}{2}$.
 - C. $\frac{b+c}{2}$
 - D. b+c.
- 46. In the given diagram, A and B are the centres of the given two circles with radii of 4 cm and 5 cm respectively. If CD = 3 cm, then EF is equal to
 - A. 6 cm.
 - B. 12 cm.
 - C. 15 cm.
 - D. 18 cm.

- 47. In the given diagram, AB and AD are tangents to the given circle at point B and point D respectively. If O is centre of the given circle, then which of the options is TRUE?
 - I. OB=OF
 - II. AO=AD
 - III. AD=AB
 - A. I only
 - B. II only
 - C. I and III
 - D. II and III

- 48. In the given diagram, if $\angle ABF < 90^{\circ}$, then $\angle ADF$ is
 - A. less than 90°
 - B. greater than 90°
 - C. exactly 90°
 - D. $360^{\circ} \angle ABF$

Page 14 of 16

- 49. In the given diagram, O is the centre of the circle. If $\angle DAF = 30^{\circ}$, then $\angle DOF (\angle DAF + \angle DBF)$ is equal to
 - A. 0°
 - B. 30°
 - C. 45°
 - D. 60°

- 50. In the given diagram, O is the centre of the circle. If $\angle DAE = 35^{\circ}$ and DE = BC then $\angle BOC$ is
 - A. 17.5°
 - B. 35°
 - C. 70°
 - D. 110°

Please use this page for rough work

Annual Examinations only Reaching Only Reaching Only

Page 16 of 16

Please use this page for rough work

Annual Examina & Learning only Caching & Learning only