AGA KHAN UNIVERSITY EXAMINATION BOARD

SECONDARY SCHOOL CERTIFICATE

CLASS X EXAMINATION

APRIL/ MAY 2019

Mathematics Paper I

Time: 45 minutes Marks: 30

INSTRUCTIONS

- 1. Read each question carefully.
- 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.

201-earningonit

- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 30 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

<u>Candidate's Signature</u>	

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. You may use a simple calculator if you wish.

Page 2 of 12

The value of b, when $\sqrt{ax^2 + bx + 64} = \pm 4(x+2)$, will be 1.

- 64 A.
- 32 B.
- C. 4
- 2 D.
- $45x^2$ is the least common multiple (LCM) of 2.
 - $3x^2$ and 15xA.
 - 3x and 15xB.
 - $5x^2$ and 9xC.
 - 5x and 9xD.

3.
$$(\sqrt{x}-4) \div (x-4^2) \times (\sqrt{x}+4)$$
 is equal to

- A. 1 B. $\frac{1}{4}$
- C. $\sqrt{x} + 4$
- $\frac{\sqrt{x}+4}{\sqrt{x}-4}$ D.

Which of the following forms is suitable for the partial fraction of $\frac{5x+3}{(x-2)(x+3)}$? 4.

, arning only

- $\frac{A}{(x-2)} + \frac{B}{(x+3)}$ A. B. $\frac{A+B}{(x-2)(x+3)}$
- C. $\frac{A}{(x-2)} + \frac{Bx+C}{(x+3)}$ D. $\frac{Ax+B}{(x-2)} + \frac{C}{(x+3)}$
- The solution set of $\frac{x-1}{2} = 0$ is 5.
 - A. {-1}
 - B. {-3}
 - C. {3}
 - D. {1}

Page 3 of 12

Given that |-x| = -1, the solution set which must satisfy the equation is 6.

- A. $\{-1\}$
- B. { }
- {1} C.
- $\{\phi\}$ D.

The inequality which BEST describes m(x-1) > m, where m is a natural number, will be 7.

- A. *x*<1
- B. *x*<2
- C. *x*>1
- D. x > 2

8.

- If x is a negative number, then the mathematical statement which must be TRUE is
 - A. $-x \le 0$
 - Β. $-x \ge 0$
 - C. *x*<0
 - D. x > 0

2

- 1

Y = 1 - X

Y = X - 1Y - 1 = X

Y = -1 - X

X

Y

A.

B.

C. D.

The linear equation which satisfies the given pairs of values as shown in the given table will be 9.

Page 4 of 12

10. The correct graphical representation of a y + a = 0 is

S1902-0721110

Page 5 of 12

The standard form of the quadratic equation $\frac{3}{2} + x^2 = 2x$ is 12.

- $x^{2} + 4x + 3 = 0$ A. $B. \qquad x^2 - 2x + 3 = 0$ C. $2x^2 + 4x + 3 = 0$ $2x^2 - 4x + 3 = 0$ D.
- When four times of a number x is squared, then the result will be half of one less than that 13. number. The given statement can be written mathematically as
 - $16x^2 = \frac{1}{2}(x-1)$ A. B. $4x^2 = \frac{1}{2}(x-1)$ C. $16x^2 = \frac{1}{2}x - 1$ D. $4x^2 = \frac{1}{2}x - 1$
- indonli Which of the following equation(s) is same as $2x^2$ – -1=0? 14.

(Note: $x \neq 0$)

- $\cdot \qquad 3 \left(\frac{1}{x^2} + 1\right) =$ I.
- II. $2(x^2 1) = 0$ III. $\frac{1}{x} - 2x = 0$
- A. II only
- III only B.
- C. I and II
- I and III D.
- The valid condition for the distance between two points (a,b) and (c,d) will be 15.

A. $(a-c)^2 + (b-d)^2 \ge 0$ B. $(b-a)^2 + (d-c)^2 \ge 0$ C. $(a-c)^2 + (b-d)^2 < 0$

D. $(b-a)^2 + (d-c)^2 < 0$

PLEASE TURN OVER THE PAGE

Page 6 of 12

16. Which of the following points is collinear with the points (x, y) and (x-1, y)?

- A. (x+1, y+1)
- B. (x-1, y-1)
- C. (x+1, y)
- D. (x, y+1)

17. If (1, -a) is the midpoint of (0, -5) and (2, -5), then the value of (1-a) will be

- A. -4
- B. -1
- C. 1 D. 6

18. $1\frac{1}{4}$ rotation in anticlockwise direction is equal to

- A. 90°
- B. 270°
- C. 288°
- D. 450°
- 19. If the central angle measured in radians is $\alpha + 2$ and the length of circular arc is 3π of radius *r*, then the value of α is equal to

nindor

- A. $3\pi + 2$
- B. $3\pi 2$
- C. $\frac{3\pi}{2}$
- D. 3π

20. If the sum of all quadrantal angles is x, then x must be equal to

- A. 180°
- B. 225°
- C. 360°
- D. 900°

21. For $A = 45^{\circ}$, the value of $(\sin A + \cos A)^2$ is equal to

- A. 1
- B. 2
- C. $\frac{1}{2}$
- D. $\frac{1}{4}$
- S1902-0721110

Page 7 of 12

22. Which of the following lengths do NOT form a right angled triangle?

 $3\sqrt{2}$, $4\sqrt{2}$ and $5\sqrt{2}$ A.

- 6, 8 and 10 B.
- 5, 5 and 10 C.
- D. 3, 4 and 5
- 23. In the given diagram, if the diameter of the circle is AB, then radius of the circle, in terms of a and b, will be

- If the length of the sides of a right angled triangle are k, l and m such that l < k < m, then 24. according to Pythagoras' theorem
 - A. $m^2 = k^2 l^2$ B. $l^2 = (k+m)^2$ C. $m^2 = (k+l)^2$

D.
$$l^2 = m^2$$

Page 8 of 12

Use the given information to answer Q.25, Q.26 and Q.27.

The given diagram shows a circle with centre O. Two tangents are drawn each from points P and Q to the circle at points S and R respectively that form a quadrilateral PSQR.

Page 9 of 12

Use the given information to answer Q.28, Q.29 and Q.30.

In the given circle, two arcs KL and MN are congruent.

NOT TO SCALE

- Β. 140°
- C. 110°
- 70° D.

The CORRECT relationship between the lengths of chords KL and MN will be 30.

A.
$$2MN = KL$$

B. $KL = \frac{1}{2}MN$

C.
$$KL - MN = 0$$

D.
$$KL + MN = 0$$

Page 10 of 12

Please use this page for rough work

