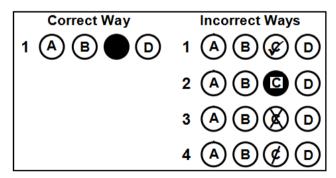
AGA KHAN UNIVERSITY EXAMINATION BOARD

SECONDARY SCHOOL CERTIFICATE

CLASS IX


ANNUAL EXAMINATIONS 2021

Mathematics

Time: 1 hour 40 minutes Marks: 50

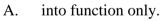
INSTRUCTIONS

- 1. Read each question carefully,
- answersh 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 50 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

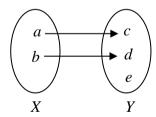
Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. The marks obtained on the 50 MCQs will be equated to the total marks of 75 for the theory examination results.
- 8. You may use a simple calculator if you wish.

Use the given information to answer Q.1 and Q.2.


It is given that $M = \{0, 1, 2, 3\}$ and $N = \{1, 3, 4, 5\}$.

- 1. The set M N is equal to
 - A. $\{0\}$.
 - B. $\{0,2\}$.
 - C. $\{4,5\}$.
 - D. $\{1,3\}$.
- 2. The set $N \cup M$ is equal to
 - A. $\{1,3\}$.
 - B. $\{0,2,4,5\}$.
 - C. $\{0,1,2,3,4,5\}$.
 - D. $\{0,1,1,2,3,3,4,5\}$.
- 3. For the Cartesian product $P \times Q = \{(1, m), (1, 3), (4, m), (4, 3), (7, m), (7, 3)\}$, the number of elements in set Q is
 - A. 6
 - B. 5
 - C. 3
 - D. 2


Use the given information to answer Q.4 and Q.5.

A mapping from set *X* to set *Y* is given in the diagram.

4. The given mapping shows a/ an

- B. one-one function only.
- C. one-one and into function.
- D. one-one and onto function.

- 5. If the element e is removed from the set Y, then the given mapping will become a/an
 - A. onto function only.
 - B. one-one function only.
 - C. one-one and into function.
 - D. one-one and onto function.

Page 3 of 20	
6.	If $A = \{1, 2, 3\}$ and $A \cup B = \{1, 2, 3, 4, 5\}$, then the possible set(s) B will be
	I. {3, 4, 5}.II. {1, 3, 5}.III. {2, 4, 5}.
	A. I only B. II only C. I and III D. II and III
7.	Consider two sets $A = \{2, 3, 4\}$ and $B = \{a, b\}$. The binary relation $\{(2, b), (3, b), (4, b)\}$ is
	 A. not a function. B. an into function. C. an onto function. D. an one-one function.
8.	If $A = \{a, b\}$ and $B = \{10, 20\}$, then which of the following option(s) is/ are binary relation from A to B?
	I. $\{(a, 10), (b, 20)\}$ II. $\{(10, a), (20, b)\}$ III. $\{(a, 20)\}$ IV. $\{(10, b)\}$
	A. I only B. II only C. I and III D. II and IV
9.	If a universal set is defined as $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and E is the set of even numbers then E^C is
	A. φ. B. {1, 3, 5, 7, 9}. C. {2, 4, 6, 8, 10}. D. {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
10.	If a number 0.0101 can also be expressed as 1.01×10^p , then the value of p is equal to
	A2 B1 C. 1 D. 2
11.	On converting $10^{-3} = 0.001$ into the logarithmic form $\log_{10} m = n$, the value of m will be
	A3 B. 0.001 C. 1 D. 10

PLEASE TURN OVER THE PAGE

Page 4 of 20

- The value of $\log_x \left(\frac{1}{r^2}\right)$ is equal to
 - A.
 - B. 1 C. 2
- In a single logarithm, $\log a^2 3\log b + \log a$ can be written as 13.
- D. 4

 On simplification, $\frac{y^0 \times x}{x^0 \times y}$ is equal to $\frac{x}{y}$ $\frac{y}{x}$ 1

 - D. 0

Page 5 of 20

- If b-a=2 and $\frac{1}{2}(b+a)=1$, then the value of b^2-a^2 is equal to
 - A.
 - B. 4
 - C. $\frac{1}{2}$
 - D. $\frac{1}{4}$
- The value of $(2+4)-\sqrt{4}+\sqrt{2}$ is equal to
- The value of $\left[\frac{1}{2}(a+x)\right]^3$, when a=1-x, is equal to

 A. $\frac{1}{6}$ B. $\frac{1}{8}$ C. $\frac{3}{2}$ E. $\frac{3}{8}$ The value of $\left[\frac{1}{2}(a+x)\right]^3$, when a=1-x, is equal to a=1-x.
- 19. One of the examples of polynomial expression is
 - A. $5\sqrt{x} + 5$
 - B. $3x^3 + 4x^{\frac{2}{3}} + 6$
 - C. $3x^{-3} + 2x^2 + 3$
 - D. $5x^3 \frac{4}{3}x^2 + \sqrt{3}$

- On simplification of $\left(\frac{a^2 + a^2b}{1 b^2}\right)$, we get
- -1 and y = -1 is

 On complete factorisation, $3-3p^2$ is equal to

 A. $3(1-p)^2$.

 B. $3(3-p)^2$.

 C. 3(1+p)(1-p).

 1. 3(3+p)(3-p).

 The expression r^2-3+7 . 21.
- 22.
- 23.
 - A. $(r+3)^2$
 - B. $(r-3)^2$
 - C. $(r-3)^2 + 6^2$
 - D. $(r+3)^2+6^2$
- If a polynomial $q^3x + q^3 + 1$ is divided by a linear expression, then the remainder is 1. The 24. linear expression must be
 - A. x+1
 - x-1B.
 - C. x+q
 - D. x-q

- On factorisation of x(x+2)+1, we get 25.
 - x(x+3). A.
 - B. 2x(x+1).
 - C. (x+1)(x+1).
 - D. (x+2)(x+1).
- On complete factorisation of x + y (x y)(x + y), we get
 - A. (x+y)(x-y).
 - B. -(x+y)(x-y).
- (x+1). (x-1)(x+2).D. (x+1)(x-2).28. On factorisation of $b^3 \frac{1}{b^3}$, we get

 A. $\left(b \frac{1}{b}\right) \left(b^2 1 + \frac{1}{b^2}\right).$ B. $\left(b \frac{1}{b}\right) \left(b^2 1 \frac{1}{b^2}\right).$ C. $\left(b \frac{1}{b}\right) \left(b^2 + 1\right)^{-1}$ D. $\left(\frac{1}{b^2}\right) \left(\frac{1}{b^2}\right) \left(\frac{1}{b^2}\right)$

 - D. $\left(b \frac{1}{h}\right) \left(b^2 + 1 + \frac{1}{h^2}\right)$.
 - The polynomial $ax^3 x^2 x$ is divided by x + 1 and the remainder is 1. The value of a will be 29.
 - A. -3
 - B. -1
 - C. 1
 - D. 3

Page 8 of 20

- The option which represents one of the zeros of the polynomial $x^3 + 2x^2 x 2$ is 30.
 - A. -1
 - B. 0
 - C. 2
 - D. -3
- If $R = \begin{bmatrix} a & -b \end{bmatrix}$, then the additive inverse of R is 31.
 - A. $-[a \ b]$.

 - B. $-[a \ b]$. C. $-[-a \ b]$. D. $-[-a \ -b]$.
- 32. If $N = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, then the transpose of *N* is

 - C. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - D.

AFRAIRITE OF LEARNING ONLY Use the given information to answer Q.33, Q.34 and Q.35.

Given that $E = \begin{bmatrix} 0 & -1 \end{bmatrix}$, $F = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ and $G \times F = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$

- 33. The order of matrix G
 - A. is 2×1
 - B. is 1×2
 - C. is 2×2
 - cannot be determined D.

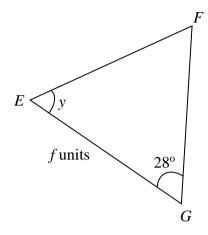
Page 9 of 20

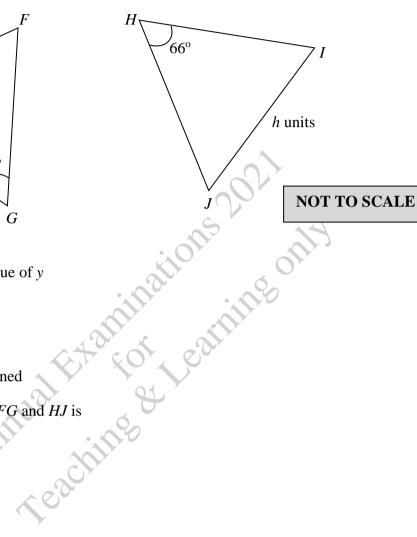
- The product of matrices E and F, i.e., $E \times F$ is

 - C.
 - D. [0].
- The multiplicative inverse of E^2
 - is [0 1]. A.

 - D. does not exist.
- The matrix $\begin{vmatrix} 0 & 1 & 0 \end{vmatrix}$ is a/ an
 - A. unit matrix.
 - scalar matrix. B.
 - C. square matrix.
 - diagonal matrix. D.
- an Alfrida e Amino on the chine of the chine If the matrix $\begin{bmatrix} a & -a \\ b & b \end{bmatrix}$ is a singular matrix, then the condition will be
 - A. $ab = \frac{1}{2}$
 - B. ab = 0
 - C. $ab = -\frac{1}{2}$
 - D. a = -b

Page 10 of 20

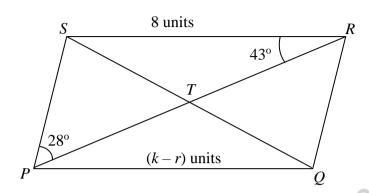

- If a matrix equation is $3X \begin{bmatrix} 6 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, then the matrix *X* will be


 - B. $\begin{bmatrix} 3 & 0 \\ -3 & -2 \end{bmatrix}$ C. $\begin{bmatrix} -9 & -6 \\ -3 & -4 \end{bmatrix}$
- The matrix form of the given simultaneous linear equations x-2y=3 and y=3.

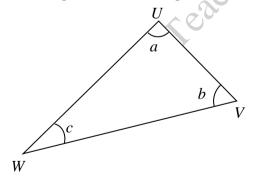
 A. $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$ B. $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$ C. $\begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$ D. $\begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$

Use the given information to answer Q.40 and Q.41.

In the given diagram, ΔEFG and ΔHIJ are congruent.



- 40. If $\angle E = y$, then the value of y
 - A. is 66°
 - B. is 86°
 - C. is 94°
 - D. cannot be determined
- 41. The sum of the lengths FG and HJ is
 - A. 2*f* units.
 - B. hf units.
 - C. 2*h* units.
 - D. f + h units.


Use the given information to answer Q.42 and Q.43.

In the given diagram, *PQRS* is a parallelogram.

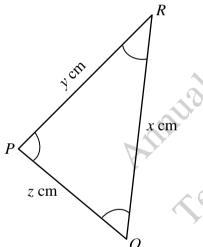
NOT TO SCALE

- 42. If k = 24, then the value of r is equal to
 - A. 3
 - B. 8
 - C. 16
 - D. 32
- 43. The value of $\angle SRQ$ is equal to
 - A. 15°
 - B. 28°
 - C. 43°
 - D. 71°
- 44. In the given triangle, VW is the longest side and UV is the smallest side.


NOT TO SCALE

The CORRECT relationship between the angles is

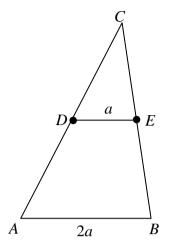
- A. c > a
- B. b > a
- C. a > c
- D. c > b


Page 13 of 20

45. For the given triangle ABC, the length of side AB is

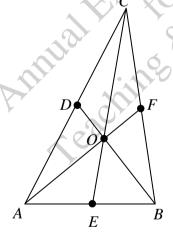
NOT TO SCALE

- A. x cm.
- B. y cm
- C. x y cm.
- D. $x \frac{y}{2}$ cm.
- 46. In the correspondence of $\triangle ABC \leftrightarrow \triangle PQR$, If AB = PQ, BC = QR and CA = RP, then the correct relation between the angles will be



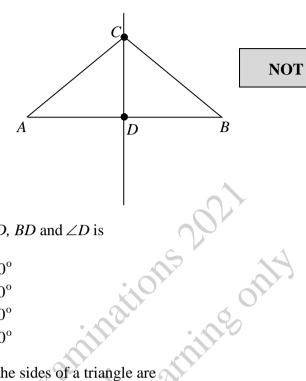
NOT TO SCALE

- A. $\angle A = \angle R$.
- B. $\angle B = \angle R$.
- C. $\angle A = \angle Q$.
- D. $\angle B = \angle Q$.


Page 14 of 20

47. In the given triangle ABC, DE is parallel to AB. The CORRECT relation between the sides is

NOT TO SCALE


- A. AC = BC.
- B. AD = DC.
- C. DC = EC.
- D. AC = 2BE.
- 48. In the given triangle ABC, the points D, E and F are the midpoints of the sides AC, AB and BC respectively. The line segments AF, BD and CE are the
 - A. altitudes.
 - B. medians.
 - C. right bisectors.
 - D. angle bisectors.

NOT TO SCALE

Page 15 of 20

49. In the given diagram, AB is a line segment and AC = BC.

NOT TO SCALE

The CORRECT relation of AD, BD and $\angle D$ is

- A. $AD \neq BD$ and $\angle D \neq 90^{\circ}$
- B. $AD \neq BD$ and $\angle D = 90^{\circ}$
- C. AD = BD and $\angle D = 90^{\circ}$
- D. AD = BD and $\angle D \neq 90^{\circ}$
- 50. The CORRECT measures of the sides of a triangle are
 - A. 5 cm, 7 cm and 13 cm.
 - B. 6 cm, 6 cm and 12 cm.
 - C. 7 cm, 7 cm and 10 cm.
 - D. 9 cm, 3 cm and 14 cm.

Annual Examinations only Reduning Only Caching & Learning Only

Annual Examinations only

Reaching & Learning only

Annual Examinations and leading only Reaching only

Annual Examinations only

Peaching & Learning only