AGA KHAN UNIVERSITY EXAMINATION BOARD

HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XI EXAMINATION

APRIL/MAY 2018

Mathematics Paper II

Time: 2 hours 15 minutes Marks: 65

INSTRUCTIONS

Please read the following instructions carefully.

1. Check your name and school information. Sign if it is accurate.

I agree that this is my name and school. Candidate's signature

- 2. RUBRIC. There are TEN questions. Answer ALL questions. Choices are specified inside the paper.
- 3. When answering the questions:

Read each question carefully.

Use a black pointer to write your answers. DO NOT write your answers in pencil.

Use a black pencil for diagrams. DO NOT use coloured pencils.

DO NOT use staples, paper clips, glue, correcting fluid or ink erasers.

Complete your answer in the allocated space only. DO NOT write outside the answer box.

- 4. The marks for the questions are shown in brackets ().
- 5. You may use a scientific calculator if you wish.

Q.1. (Total 6 Marks) Without using calculator, apply basic operations to separate real and imaginary parts of $\frac{(3+2i)^2}{1+i} \div (2+3i).$
Without using calculator, apply basic operations to separate real and imaginary parts of $\frac{(3+2i)^2}{1+i} \div (2+3i).$
9
- Alines
X CO

Page 3 of 20	
Q.2. a. Without expansion, verify that $\begin{vmatrix} a & b & c \\ 1 & 1 & 1 \\ bc & ac & ab \end{vmatrix} = - \begin{vmatrix} a & b & b+c \\ a^2 & b^2 & b^2+c^2 \\ 1 & 1 & 2 \end{vmatrix}.$	(Total 8 Marks) (4 Marks)
8	
b. The multiplicative inverse of the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ is $\begin{bmatrix} -1 & 0 & a \\ 2 & 0 & -1 \\ -4 & 1 & 2 \end{bmatrix}$. Find the value	lue of a.
- CB (01 &)	(4 Marks)
ALD CHING	
PLEASE TURN OVER THE PAGE	

Page 4 of 20
Q.3. (Total 6 Marks)
Find the first term (a_1), common difference (d) and the n^{th} term of an arithmetic sequence which satisfies conditions $4 \times a_6 = a_{26}$ and $a_{15} = 47$.
120 3110

Page 5 of 20
(ATTEMPT EITHER PART a OR PART b OF Q.4.) Q.4. (Total 3 Marks)
a. Over a period of five years in a certain city, the number of road accidents increased by 20% per year. If there were 10,240 accidents in 2010 and the road accidents follow geometric sequence, then how many accidents occurred in 2015?
(Note: The answer should be the nearest whole number.)
b. Find TWO harmonic means between $\frac{1}{17}$ and $\frac{1}{32}$.
18 60, 01

Page 6 of 2	20	
Q.5. a.	(ATTEMPT EITHER PART a OR PART b OF Q.5.)	(Total 6 Marks)
i.	How many different words can be formed with the letters of word BREA	D if
	I. all letters are used?	(1 Mark)
	II. all letters are used and B and R always come together?	(1 Mark)
	III. only three letters are used?	(1 Mark)
	.80	
	120 1100	
	18 00	
ii.	A basket contains 6 white balls and 4 black balls. If all the balls are identi many selections of 4 balls can be made such that at least 3 of them are wh	
		(3 Marks)
	•	
		(3 Marks)

. Complete the given table to show all possible outcomes. Die-1	Die-1 Die-2 1 2 4 7 3 6 7 4 7 8 5 7 10 6 7 10 11 12 11 12 11 12 13 14 15 16 17 18 10 11 11 12 11 11 12 13 14 15 16 17 18 10 11 11 11 11 12 11 11 12 13 14 15 16 17 18 10 11 11 11 11 11 11 11 11 11 11 11 11				PART a				
Die-2 1 2 3 4 5 6 7 3 6 7 4 7 8 5 7 10 6 7 11 2 3 6 7 10 12 i. Find the probability of obtaining the score of I. exactly 10. II. at least 10.	Die-1 Die-2 1 2 3 4 7 3 6 7 4 7 8 5 7 10 6 7 10 12 II. at least 10. III. at most 10.							i together.	(2)
Die-2	Die-2 1 2 3 4 5 6 1 2 4 7 7 2 4 7 8 3 6 7 10 5 7 10 6 7 10 12 ii. Find the probability of obtaining the score of I. exactly 10. II. at least 10. III. at least 10. III. at most 10.		rven table	to snow a	n possible	outcomes	•		(2.
2 4 7 7 3 6 7 4 7 8 5 7 10 6 7 12 i. Find the probability of obtaining the score of I. exactly 10. II. at least 10.	2 4 7 7 3 6 7 4 7 8 5 7 10 6 7 12 ii. Find the probability of obtaining the score of I. exactly 10. II. at least 10. III. at most 10.		1	2	3	4	5	6	
3 6 7 4 7 8 5 7 10 6 7 12 i. Find the probability of obtaining the score of I. exactly 10. II. at least 10.	3 6 7 4 7 8 5 7 10 6 7 12 ii. Find the probability of obtaining the score of I. exactly 10. II. at least 10. III. at most 10.	1	2					7	
4 7 8 10 5 7 10 12 i. Find the probability of obtaining the score of I. exactly 10. II. at least 10.	4 7 8 10 5 7 10 12 ii. Find the probability of obtaining the score of I. exactly 10. III. at least 10. III. at most 10.	2		4			7		
5 7 10 6 7 12 i. Find the probability of obtaining the score of I. exactly 10. II. at least 10.	5 7 10 6 7 12 ii. Find the probability of obtaining the score of I. exactly 10. II. at least 10. III. at most 10.	3			6	7		KIL	
i. Find the probability of obtaining the score of I. exactly 10. II. at least 10.	ii. Find the probability of obtaining the score of I. exactly 10. II. at least 10. III. at most 10.	4			Z	8			
i. Find the probability of obtaining the score ofI. exactly 10.II. at least 10.	ii. Find the probability of obtaining the score of I. exactly 10. II. at least 10. III. at most 10.	5		7	2		10		
I. exactly 10. II. at least 10.	I. exactly 10. II. at least 10. III. at most 10.	6	7	37				12	
I. exactly 10. II. at least 10.	I. exactly 10. II. at least 10. III. at most 10.	ii. Find the probal	oility of ob	taining th	e score of			_	
	III. at most 10.		, V S						(1
III at most 10		II. at least 10	0.	0					(1
m, at most 10.	IV. other than 10.	III. at most 1	0.						(1
IV. other than 10.		IV. other than	n 10.						(1
			<u> </u>						

PLEASE TURN OVER THE PAGE

Page 8 of 20
Q.6. (Total 6 Marks)
Prove by mathematical induction that for all positive integral values of n , $7^n - 1$ is divisible by 6.
¹ / ₈ 0 ⁽¹⁾
- C (O &)
A Chinos
- Co

Page	9 of 20	
Q.7	(ATTEMPT EITHER PART a OR PART b OF Q.7.)	(Total 8 Marks)
a.	Find the solution set of the equation $x^4 - 7x^3 + 12x^2 - 7x + 1 = 0$.	(8 Marks)
b.	i. Solve the following system of equations.	(6 Marks)
	$x^2 + y^2 + 2y = 16$ $3x + y = 6$	
	ii. Prove that $(\omega^7 + 1)^2 = \omega$.	(2 Marks)
	.8	
	Nay O arring	
	(B 60, 8)	
	PA Chillo	
	PLEASE TURN OVER THE PAGE	

Page 10 o	of 20	
Q.8. a.	(ATTEMPT EITHER PART a OR PART b OF Q.8.) (Total	l 7 Marks)
i.	Find the remaining trigonometric ratios, if $\sin \theta = \frac{5}{13}$ and the terminal ray of θ is the first quadrant.	not in (4 Marks)
	2000	
ii.	Prove that $\frac{1-\cot^2\theta}{1+\cot^2\theta} = \sin^2\theta - \cos^2\theta$.	(3 Marks)

Page 11 of 20				
(ATTEMPT EITHER PART a OR PART b OF Q.8.)				
b. i. Prove that $\cos(\alpha + \beta) \times \cos(\alpha - \beta) = 1 - (\sin^2 \alpha + \sin^2 \beta)$.	(4 Marks)			
. 8 0/14				
120/10				
(B) (O) 8-				
ii. With the help of $\cos \alpha$, prove that $\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$.	(3 Marks)			
PLEASE TURN OVER THE PAGE				

Page	12 of 20
Q.9. a.	(ATTEMPT EITHER PART a OR PART b OF Q.9.) (Total 8 Marks)
	i. With the help of suitable diagram of an oblique triangle <i>ABC</i> , prove that $\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$. (5 Marks)
	Space for diagram
	AKULEB ROF & Learning Only Reaching

Page 13 of 20
ii. In the given diagram, find the value of a when $b=25$ cm, $\beta=35^{\circ}$ and $\gamma=30^{\circ}$ (3 Marks) NOT TO SCALE A b c a c a d d d d d d d
Atheres in a learning to the string of the s
PLEASE TURN OVER THE PAGE

(ATTEMPT EITHER PART a OR PART b OF Q.9.)

b. Prove that $\sin \frac{\beta}{2} = \sqrt{\frac{(s-c)(s-a)}{ac}}$. (8 Marks)

(**Hint:** $\cos \beta = \cos \left(\frac{\beta}{2} + \frac{\beta}{2} \right)$ and 2s = a + b + c)

Mr. Co
C 60 01
X CO

(ATTEMPT EITHER PART a OR PART b OF Q.10.)

Q.10. (Total 7 Marks)

a. Complete the following table to draw the graph of $\csc\theta$ on the given graph. Also write the range of the $\csc\theta$. (7 Marks)

θ	0	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
$\csc\theta$													

+++	+	+	\vdash	\vdash	\vdash	+	\vdash	\vdash	\rightarrow	\rightarrow	+	\vdash	+++	+	\vdash	\vdash	\rightarrow	++	\longrightarrow	\rightarrow	-	-	\rightarrow	-	-	-	_	-	-	\rightarrow	\rightarrow	+	+
	++	++	\vdash	\vdash	+++	++	\vdash	\vdash	+	\rightarrow	++	₩	+++	++	\vdash	++	+	++	+++	++	+-	\vdash	++	+++	₩	-	\vdash	\vdash	\vdash	\vdash	+	++	++
$\overline{}$	++	+	\vdash	\vdash	+++	+	\vdash	\vdash	+	+	+	\vdash	+++	+	\vdash	++	\rightarrow	++	+++	++	++-	+++	++	+++	++		\vdash	\vdash		\vdash	++	+	+
+++	+	+	\vdash		\vdash	+	\vdash	-	$\overline{}$	+	+	\vdash	+++	+	\vdash	 	+	++	+++	+	++-	+++	+	+++	++	++	\vdash	\vdash		\vdash	+	+	+
+++	+	+			\vdash	+		\Box	\vdash	\rightarrow	+	\vdash	+++	+	\vdash	 	\rightarrow	+	111	+	1	\Box	+	+++	11	+	\Box		\vdash	\vdash	+	++	++
+	+	+	\vdash		\vdash	+		\vdash	-	\rightarrow	+	\vdash	+-	+	\vdash	\vdash	\rightarrow	+	$^{\rm HI}$	+	-	$^{\rm HI}$	+	+++	11	+	\vdash	\vdash		\vdash	+	+	+
+	+	+	\vdash		\vdash	+	\vdash	\vdash	-	\rightarrow	+	\vdash	+++	+	\vdash	-	\rightarrow	+	$^{\rm HI}$	+	+	$^{\rm HI}$	+	+++	11	+	\vdash	\vdash		\vdash	+	+	+
111	+				\Box	+			\Box		11	\vdash	111	\top	\vdash	 	11	+	111	\top	11	111	\top	111	+	+	\Box			\Box	\rightarrow	+	11
+++	+	++			\vdash	++	\Box	111	\vdash	\rightarrow	+	\vdash	111		\vdash	 	+	+	111	+		\sqcap	+	111	11	+	\Box	\vdash		\sqcap	++	+	+
+++	+	11			\vdash	11		111	\neg	++	11	\vdash	111		\vdash	 		11	111	++		111	++	111	11	11		\vdash		\vdash	++	11	++
+++	+	+	\vdash	\vdash	\vdash	+	\vdash	ш	\vdash	\rightarrow	+	\vdash	++	+	\vdash	 	+	+	111	+	+	\sqcap	+	111	11	++	\vdash			\vdash	+	++	+
+++	+	+	\vdash	\vdash	\vdash	+	\vdash	ш	+	\rightarrow	+	\vdash	+++	+	\vdash	 	+	+	111	+	+	111	+	111	11	++	\vdash			\vdash	+	+	+
+++	+	++			\vdash	++-		111	-	\rightarrow	+		 		\vdash	 	\rightarrow	++	+++	+	++-	\vdash	+	+++	1	++	-			\vdash	\rightarrow	++	++
+++	+	+			-	+		-	-	\rightarrow	+			-	\vdash	111	\rightarrow	+	+++	\rightarrow	1	+++	\rightarrow	+++	1	-	-			\vdash	\rightarrow	+	+
+++	+	+	\vdash		++	+	-	-	-	\rightarrow	+	-	+++	+	\vdash		-	+	+++	+	++-	\vdash	+	+++	++	-	-	\vdash		-	+	+	+
+++	+	+	\vdash		++	+	-	-	-	\rightarrow	+	-	+++	+	\vdash		\rightarrow	+	+++	+	++-	\vdash	+	+++	++	-	-	\vdash		-	+	+	+
+++	++	+	\vdash		+++	+	-	-	-	\rightarrow	+	\vdash	+++	+	\vdash		\rightarrow	++	+++	+	++-	+++	+	+++	++	-	-	\vdash	\vdash	\vdash	+	+	+
+++	++	+	\vdash	\vdash	\vdash	+	\vdash	\vdash	+	\rightarrow	+	-	+++	+	\vdash		\rightarrow	++	+++	+	+-	\longrightarrow	+	+++	++		-	\vdash	\vdash	\vdash	+	+	+
+++	+	+	-	-	+	+	-	\vdash	-	\rightarrow	+	-	+-		\vdash	+	\rightarrow	+	-	+	+-	\vdash	+	+++	++	-	-	\vdash	-	\rightarrow	+	+	+
+++	+	++			\rightarrow	++-			-	\rightarrow	++-	Н-	+++	++-	Н-			++	+++	++	++-	++	+	+++	++			-	-	-		++	++
+++	+	++-	\vdash	\vdash	++-	++-	\vdash	\vdash	+	\rightarrow	+	-	+++		\vdash		\rightarrow	++-	+++	+	+-	\longrightarrow	+	+++	++		-	\vdash	\vdash	\rightarrow	+	+	+
+++	+	++-	\vdash	\vdash	++-	++-	\vdash	\vdash	+	\rightarrow	+	-	+++		\vdash		\rightarrow	++-	+++	+	+-	\longrightarrow	+	+++	++		-	\vdash	\vdash	\rightarrow	+	+	+
+++	+	++-	\vdash	\vdash	++	++-	\vdash	\vdash	+	\rightarrow	+	-	+++		\vdash		\rightarrow	++-	+++	+	+-	\longrightarrow	+	+++	++		-	\vdash	\vdash	\rightarrow	+	+	+
+++	+	+	\vdash	-	\rightarrow	+	-	\vdash	\rightarrow	\rightarrow	+	⊢-	+	-	\vdash	\vdash	\rightarrow	+	\longrightarrow	\rightarrow		\vdash	\rightarrow	+++	++	+	-	\vdash	\vdash	\rightarrow	+	+	+
+++	++	++	\vdash	\vdash	+++	++-	\vdash	₩	+	+	++-	\vdash	+++	++-	\vdash	++	+	++	+++	+	++-	+++	+	+++	+	++	\vdash	\vdash	\vdash	\vdash	+	++	+
+++	++	+	\vdash	++-	+++	+	\vdash	\vdash	\vdash	\rightarrow	+	\vdash	+++	+	\vdash	+++	+	+	+++	+	+	\vdash	+	+++	+	++	\vdash	\vdash	\vdash	$\vdash \vdash \vdash$	+	+	+
+++	++	+	\vdash	\vdash	++	+	\vdash	₩	+	+	+	⊢-	+++	+	\vdash	++1	+	++	+++	+	+	\mapsto	+	+++	+	++	\vdash	\vdash	\vdash	\vdash	+	++	+
+++	+	++	\vdash	\vdash	++	+	\vdash	\vdash	\vdash	+	+	\vdash	+++	+	\vdash	++	+	+	+++	+	++-	\vdash	+	+++	+	++	\vdash	\vdash	\vdash	\vdash	+	+	+
+++	+	+	\vdash	$\sqcup \sqcup$	\vdash	+	\vdash	$\sqcup \sqcup$	\perp	+	+	╙	+++	+	\vdash	$\sqcup \sqcup$	+	+	+++	+	+	$\vdash \vdash \vdash$	+	+++	+	++	\vdash	\vdash	\vdash	$\vdash \vdash$	+	+	++
+++	+	+	\perp	\perp	\vdash	\perp	\perp	\vdash	\vdash	\rightarrow	+	\vdash	++	\perp	\vdash	\vdash	\perp	\perp	++	\perp	+	\vdash	\perp	+++	+	11	\vdash	\perp	\perp	\vdash	\perp	\perp	\perp
\vdash	+	+	\vdash	$\sqcup \sqcup$	$\sqcup \sqcup$	+	\vdash	\sqcup	\vdash	\rightarrow	+	\vdash	+	\perp	\vdash	$\sqcup \sqcup$	\perp	+	\vdash	\rightarrow	+	$\sqcup \sqcup$	\rightarrow	+	+	1	\vdash	\perp		$\sqcup \sqcup$	\rightarrow	+	\perp
+++	+	+	\vdash	$\sqcup \sqcup$	\vdash	+	\vdash	$\sqcup \sqcup$	\perp	+	+	╙	+++	+	\vdash	$\sqcup \sqcup$	+	+	+++	+	+	$\sqcup \sqcup$	+	+	+	+	\vdash	\vdash	\vdash	$\vdash \vdash$	+	+	++
+++	+	+	\vdash	$\sqcup \sqcup$	\vdash	+	\vdash	$\sqcup \sqcup$	\perp	+	+	╙	+++	+	\vdash	$\sqcup \sqcup$	+	+	+++	+	+	$\sqcup \sqcup$	+	+	+	+	\vdash	\vdash	\vdash	$\vdash \vdash$	+	+	++
+++	+	+	\vdash	$\sqcup \sqcup$	\vdash	+	\vdash	$\sqcup \sqcup$	\perp	+	+	╙	+++	+	\vdash	$\sqcup \sqcup$	+	+	+++	+	+	$\sqcup \sqcup$	+	+	+	+	\vdash	\vdash	\sqcup	$\vdash \vdash$	+	+	++
\vdash	+	+	\vdash	$\sqcup \sqcup$	$\sqcup \sqcup$	+	\vdash	\sqcup	\perp	\rightarrow	+	\vdash	+	\perp	\vdash	$\sqcup \sqcup$	\perp	+	\vdash	\rightarrow	+	$\sqcup \sqcup$	\rightarrow	+++	+	11	\vdash	\perp		\sqcup	\perp	+	\perp
+++	+	+	\vdash	$\sqcup \sqcup$	$\sqcup \sqcup$	+	\vdash	\sqcup	\perp	\rightarrow	+	\vdash	+	\perp	\vdash	$\sqcup \sqcup$	\perp	+	\vdash	\rightarrow	+	$\sqcup \sqcup$	\rightarrow	+	+	11	\vdash	\perp		\sqcup	\perp	+	\perp
+++	+	+	\vdash	$\sqcup \sqcup$	$\sqcup \sqcup$	+	\vdash	\sqcup	\perp	\rightarrow	+	\vdash	+	\perp	\vdash	$\sqcup \sqcup$	\perp	+	\vdash	\rightarrow	+	$\sqcup \sqcup$	\rightarrow	+	+	11	\vdash	\perp		\sqcup	\perp	+	\perp
\Box	\perp	\perp			$\perp \perp \perp$	\perp		\sqcup	\perp	\perp			\Box			$\sqcup \sqcup$	\perp	\perp	\Box	\perp	\perp	$\sqcup \sqcup$	\perp	+	\perp	\Box				\Box	\perp	\perp	\perp
\Box	\perp				$\perp \perp$			\Box	\Box	\perp			\Box			$\sqcup \Box$	\perp	\perp	\Box	\perp		\Box	\perp	\perp		\Box				\Box	\perp		\perp
\perp	+	\perp			\sqcup	\perp	\perp	\sqcup	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\Box	\perp	\perp	\vdash	\perp	\perp	\sqcup	\perp	+	\perp	\perp	\perp	\perp		\sqcup	\perp	\perp	\perp
\sqcup	+	\perp	\vdash	$\sqcup \sqcup$	$\sqcup \sqcup$	\perp	\vdash	$\sqcup \sqcup$	$\perp \perp$	\rightarrow	-	\vdash	\sqcup	\perp	\vdash	$\sqcup \sqcup$	\perp	\perp	$\sqcup \sqcup$	+	\perp	$\sqcup \sqcup$	+	+	\perp	+	\vdash			$\sqcup \sqcup$	\perp	+	11
\sqcup	\perp	\perp	\vdash	$\sqcup \sqcup$	$\sqcup \sqcup$	\perp	\vdash	$\sqcup \sqcup$	$\perp \perp$	\rightarrow	\perp	\vdash	\vdash	\perp	\vdash	$\sqcup \sqcup$	\perp	\perp	\sqcup	+	\perp	$\sqcup \sqcup$	+	+	\perp	+	\vdash			$\sqcup \sqcup$	\perp	\perp	11
\Box	\bot	\perp			$\sqcup \sqcup$	\perp		\sqcup		\perp			\perp			\sqcup	\perp	\perp	\Box	\perp	\perp	\sqcup	\perp	\perp	\perp	\perp	\Box			$\perp \perp$	\perp	\perp	\perp
								\Box		\perp			\Box			\Box			\Box			\Box	\perp			\Box				\Box	\perp		
	\perp							\Box		\perp						\Box				\perp		ш	\perp										
								\Box								\Box				\perp		ш	\perp										
ПП	\top	\top			П	\neg		ш	\Box	$\neg \neg$	\top		Ш		\Box		\neg	\top	ПП	$\neg \neg$	\top	П	$\neg \neg$	\Box	\top	\Box				\Box	\neg	\top	\top
\Box	\top	\top			ПП	\top		ш	\Box	$\neg \neg$	\neg	П	ПП	\neg	П	ш	$\neg \neg$	\top	П	$\neg \neg$	\top	П	$\neg \neg$	\Box	\top	\top	\Box			\Box	\neg	\top	\neg
\Box	\top	\top			П	\top		ш	\Box	$\neg \neg$	\top		Ш	\top	\Box	ш	\neg	\top	ш	$\neg \neg$	\top	П	$\neg \neg$	\Box	\top	\Box				\Box	\neg	\top	\top
\Box	\top	\top			П	\top		ш	\Box	$\neg \neg$	\top		Ш	\top	\Box		\neg	\top	ш	$\neg \neg$	\top	П	$\neg \neg$	\Box	\top	\Box				\Box	\neg	\top	\top
	\top									\neg								T		\Box		ш	\neg									\top	\Box
	\top																	T		\Box			\Box									T	\Box
	\top	$\overline{}$			\Box	$\overline{}$		\Box		\neg			Ш					\top	Ш	\neg		П	\neg	\Box							\neg		\neg
	\top																		\Box			\Box	\top			\Box							
																																	\Box
																		\perp															
								\Box		\perp			\Box			\Box			\Box			\Box	\perp			\prod				\Box	\perp	11	
								\Box		\perp			\Box			\Box		\perp	\Box			\Box		\perp	\Box	\prod				\Box		\perp	
	\perp	\perp			\Box	\perp		\sqcup	\perp	\perp			\perp			\Box	\perp	\perp	\Box	\perp	\perp	\Box	\perp	\perp	\perp					$\perp \perp$	\perp	\perp	\perp
$\sqcup \sqcup$	\perp	\perp		\Box	$\perp \perp \perp$	\perp		$\sqcup \sqcup$	\perp	\perp	1	\perp	\Box	\perp	\perp	$\sqcup \sqcup$	\perp	\perp	\Box	\perp	\perp	$\sqcup \sqcup$	\perp	+	\perp	\perp				\sqcup	\perp		\perp
	\perp	\perp		\sqcup	$\sqcup \sqcup$	\perp		\Box		\perp			\perp			\sqcup	\perp	\perp	\Box	\perp	\perp	\Box	\perp	\perp	\perp					$\perp \perp$	\perp	\perp	\perp
								\Box		\perp			\Box		\perp	\Box		\perp	\Box	\perp		\Box	\perp		\Box	\prod				\Box	\perp	\perp	
																\Box																	
												Ш															ш						
																		\perp							\Box							\perp	\Box
	\rightarrow									\neg		\Box	\Box				\neg		\Box	\rightarrow		\Box	\neg			\top				\Box	\neg		\neg
\neg	+	++			\vdash	+		111	\vdash	\rightarrow	11	\vdash	111	\perp	\vdash	 	\rightarrow	11	111	++	11	ш	+	111	11	†	\Box	\vdash		\sqcap	++	11	++
\blacksquare	+	+		\vdash	++	+		111	\vdash	+	+	\vdash	+++	+	\vdash	 	+	++	+++	+	+	\vdash	+	+++	11	+	\vdash	\vdash		\vdash	+	+	+
\blacksquare	+	++	\vdash	\vdash	\vdash	++	\vdash	111	+	+	++	\vdash	+++	++	\vdash	 	-	+	 	+	++	 	+	+++	+	+	\vdash	\vdash	\vdash	\vdash	+	+	+
		++	-		++	++	-	111	\rightarrow	++	++	\vdash	+++	-	\vdash	 	++	++	+++	++	++-	 	++	+++	1	++	\vdash	+		\vdash	++	++	#
	++		\vdash	++	++	+	\vdash	\vdash	\vdash	+	+	\vdash	+++	+	\vdash	++	+	+	+++	+	++	+++	+	+++	+	++	\vdash	+	\vdash	\vdash	+	+	+
	#			\vdash	+++	+	\vdash	\vdash	+	+	++	\vdash	+++	++	\vdash	 	+	++	+++	+	++	+++	+	+++	++	++	\vdash	\vdash	\vdash	\vdash	+	++	\pm
	#	++	-				1 1				1 1																						
	#	#	\Box	++	+				\neg	\neg	$\overline{}$	-			\vdash	1	\neg	+		+	_	\vdash	\rightarrow	111	-	$\overline{}$	-	\vdash		\rightarrow	+	++	

Page 16 of 20
(ATTEMPT EITHER PART a OR PART b OF Q.10.)
b. i. Find the solution set of the trigonometric equation $\sin 2x = \cos x$ when $0 \le x \le 2\pi$. (4 Marks)
ii. Find the solution set of the trigonometric equation $\theta \tan^2 \theta + 3\theta = 0$, when $0 \le \theta \le 2\pi$. (3 Marks)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DI CHINOS
ΕΝΌ ΟΕ ΡΔΡΕΡ

Please use this page for rough work

AKULEB KOT & Learning Only Reaching to Learning Only

Page 18 of 20

Please use this page for rough work

AKULEB kol & Learning Only
Reaching

Please use this page for rough work

AKULEB KOT & Learning Only Reaching to Learning Only

Page 20 of 20

Please use this page for rough work

AKULEB kol & Learning Only
Reaching