AGA KHAN UNIVERSITY EXAMINATION BOARD HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XI EXAMINATION

APRIL/ MAY 2019

Mathematics Paper I

Time: 60 minutes Marks: 40

INSTRUCTIONS

- 1. Read each question carefully.
- 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.

N oathing of

- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 40 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. You may use a scientific calculator if you wish.

Page 2 of 16

- 1. $(1-2i)\times(1+2i)$ is equal to
 - A. –3
 - B.
 - C. 1-4i

5

- D. 1 + 4i
- 2. When the conjugate of a complex number p is expressed as $-i + ci^2$, then p is
 - A. -i-c
 - B. -i+c
 - C. i-c
 - D. i+c
- 3. If $iv = \frac{9}{i}$, then the modulus of -v is equal to
 - A. –9
 - B. -3
 - C. 3
 - D. 9
- 4. The imaginary part of v, where $v = \left(\frac{i}{a}\right)^{-1}$, is equal to
 - A. $-\frac{1}{a}$
 - B. -a
 - C. a
 - D. $\frac{1}{a}$
- 5. Which of the following option(s) is CORRECT for the matrix $N = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$?
 - I. *N* is a null matrix.
 - II. *N* is a square matrix.
 - III. N is a diagonal matrix.
 - A. I only
 - B. II only
 - C. I and III
 - D. II and III

Page 3 of 16

- 6. For the matrix $\begin{bmatrix} m & ? \\ 0 & n \end{bmatrix}$, where m > 0 and n < 0, the determinant
 - A. is zero.
 - B. is positive.
 - C. is negative.
 - D. cannot be determined.
- 7. If N-M is a skew symmetric matrix, then we have
 - A. $(M-N)^t$
 - B. $(N-M)^t$
 - C. N-M
 - D. M-N
- 8. The determinant $\begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix}$ can also be written in another form as

(**Note:** *k* is a constant.)

A.
$$\begin{vmatrix} m_{11} + k & m_{12} \\ m_{21} + k & m_{22} \end{vmatrix}$$

B.
$$\begin{vmatrix} m_{11} \times k \, m_{12} & m_{12} \\ m_{21} \times k \, m_{11} & m_{22} \end{vmatrix}$$

C.
$$\begin{vmatrix} m_{11} & m_{12} - k m_{11} \\ m_{21} & m_{22} - k m_{21} \end{vmatrix}$$

D.
$$\begin{vmatrix} m_{11} \div k \, m_{21} & m_{12} \\ m_{21} \div k \, m_{11} & m_{22} \end{vmatrix}$$

Page 4 of 16

If the transpose of matrix M is $[-1-m \quad 2+n \quad 5^2 \quad -3]$, then M would be 9.

A.
$$-\begin{bmatrix} 1+m \\ -2-n \\ -25 \\ 3 \end{bmatrix}$$

B.
$$\begin{bmatrix} -1-m \\ 2n \\ 10 \\ -3 \end{bmatrix}$$

C.
$$\begin{bmatrix} -1-m \\ 2n \\ 25 \\ -3 \end{bmatrix}$$

D.
$$-\begin{bmatrix} 1+m \\ n-2 \\ 10 \\ -3 \end{bmatrix}$$

l is equal to The product of $\begin{bmatrix} -1 & i \end{bmatrix}$ and

C.
$$\left[-1+i\right]$$

D.
$$\begin{bmatrix} -i & i \end{bmatrix}$$

The general term of the sequence a^2 , $-a^3$, a^4 , $-a^5$,... is 11.

A.
$$-\frac{a^n}{a}$$

B.
$$\frac{(-a)^n}{a}$$

C.
$$-a^{n+1}$$

D.
$$(-a)^{n+1}$$

Page 5 of 16

If $T_n - a = 8d$, then the number of terms n in this arithmetic progression will be 12.

(Note: Symbols have their usual meanings.)

- 9
- 8 В.
- C. 7
- D.
- The half of arithmetic mean between two numbers $\sqrt{2a}$ and $\sqrt{b-a}$ is

 - D.
- For a geometric sequence, if (r-1) = ka, where k is a constant, then kS_{∞} will be

(Note: Symbols have their usual meanings.)

- A.

- D.
- If three geometric means are inserted between a and b to obtain a geometric progression, then b is the
 - 2nd term. A.
 - 3rd term. B.
 - 4th term. 5th term. C.

Page 6 of 16

16. If $\sum_{k=1}^{2} k = 3$, then the value of $\sum_{k=3}^{n} k$ is equal to

(**Formula**:
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
)

A.
$$\frac{n(n+1)}{2} - 3$$

B.
$$n\left(n+\frac{1}{2}\right)-3$$

C. $3-\frac{n(n+1)}{2}$

C.
$$3 - \frac{n(n+1)}{2}$$

D.
$$3-n\left(n+\frac{1}{2}\right)$$

A man goes to a bakery where he finds *Samosa* (S), Vegetable rolls (R) and Potato Cutlets (P). 17. They are served with *Chatni* (C) or *Ketchup* (K). The tree diagram which illustrates the given situation for all possible combinations will be

Page 7 of 16

- 18. On evaluating, the combination $\begin{pmatrix} a-b \\ a-b-1 \end{pmatrix}$ reduces to
 - A. 1
 - B. a-b
 - C. (a-b)!
 - D. (a-b-1)!
- 19. If (3-x)! = 24, then the value of x is equal to
 - A. 21
 - B. 19
 - C. 18
 - D. -1
- 20. The three events K, L and M are defined as:

$$K = \{x : x+1=0\}, L = \{-1, 1\} \text{ and } M = \{0, 1\}$$

Which of the given events are mutually exclusive?

- A. K and M
- B. L and M
- C. K and L
- D. L and L
- 21. By principle of mathematical induction, to prove that $1^3 + 2^3 + 3^3 + ... + K^3 = \frac{K^2(K+1)^2}{4}$ is true for $(K+1)^{th}$ term, the term that should be added to both sides is
 - A. $\frac{(K+1)^3(K+2)^3}{4}$
 - B. $\frac{(K+1)^2(K+2)^2}{4}$
 - C. $(K+1)^3$
 - D. $K^3 + 1$
- 22. The required condition to obtain the constant term in the expansion of $\left(x^2 + \frac{1}{x}\right)^6$ will be

(**Formula**: $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$, where, symbols have their usual meanings.)

- A. 12 r = r
- B. 12-2r=r
- C. 12 + r = -r
- D. 12+2r=-r

Page 8 of 16

- 23. On expanding $(y+x)^m$, the binomial coefficients of third and fourth terms become equal. The total number of terms in this expansion
 - A. is 5
 - B. is 6
 - C. is *m*
 - D. cannot be determined.
- 24. The equation $2x^{-1} + 5 = 7x^{-2}$ can be reduced to quadratic form $7t^2 2t 5 = 0$ by using the substitution(s)
 - I. $x = \frac{1}{t}$
 - II. x=x
 - III. $\frac{1}{x} = i$
 - A. I only.
 - B. II only.
 - C. I and III.
 - D. II and III.
- 25. The roots of a quadratic equation are $x = \frac{-12 \pm \sqrt{144 4(?)(m)}}{-18}$

To make the given roots complex, the required condition will be

- A. m < 4
- B. m > 4
- C. m < -4
- D. m > -4
- 26. If ω is one of the complex cube roots of unity, then $(1+\omega^2)^2$ is equal to
 - A. ω^2
 - B. $-\omega^2$
 - C. -1
 - D. 1

Page 9 of 16

In fourth roots of unity, the product of real roots is m and the product of imaginary roots is n.

The value of m-n is equal to

- 0 A.
- B.
- C. -2
- D. -1
- If α and β are the roots of $ax^2 bx = 1$, then the value of $(\alpha \beta)^2 (\alpha + \beta)^2$ will be 28.

 - D.
- When a polynomial P(x) of degree 4 is divided by x-3, the remainder is -11 as shown in the 29. given synthetic division.

3	1	0	-10	-2	4
		3	9	- 3	– 15
	?	?	- 1	- 5	-11

The quotient of the polynomial for the given solution is

- B. $-x^2 5x$ C. $x^3 + 3x^2 x 5$
- D. $x^4 + 3x^3 x^2 5x$
- The positive square root of $\left[4\left(1+\frac{1}{\tan^2\beta}\right)\right]$ will be equal to 30.
 - $2\cot\beta$ A.
 - B. $2 \tan \beta$
 - C. $2\sec\beta$
 - D. $2\csc\beta$

Page 10 of 16

- The square of the distance between two points $(-s_m, 0)$ and $(0, -t_n)$ will be 31.
 - $(s_m)^2 (t_n)^2$
 - B. $(s_m)^2 + (t_n)^2$
 - C. $(s_m t_n)^2$
 - D. $(s_m + t_n)^2$
- The trigonometric ratio $\sin[2(A-B)]$ can be expressed as 32.
 - $-2\sin A\cos B$ A.
 - $2\sin A 2\cos B$ B.
 - $2\sin(A-B)\cos(A-B)$ C.
 - $-2\sin(A-B)\cos(A-B)$ D.
- Aprilla May Learning or Marking o 3π radians can be expressed in degrees as 33.
 - 0.16° A.
 - 9.42° B.
 - 180° C.
 - 540° D.

Page 11 of 16

Use the given information to answer Q.34, Q.35 and Q.36.

A circum-circle and in-circle are drawn with different centres as shown in the given diagram. The triangle ABC is an isosceles triangle with BC = 10 cm and $\angle A = 30^{\circ}$.

- 34. The value of twice of circum-radius is equal to
 - A. 5
 - B. 20
 - C. 25
 - D. 40
- 35. The area of triangle ABC is equal to
 - A. $50 \times \sin 30^{\circ}$
 - B. $100 \times \sin 30^{\circ}$
 - C. $100 \times (\sin 75^{\circ})^{2}$
 - D. $200 \times (\sin 75^{\circ})^2$
- 36. If AB = x, then the expression for $\frac{\text{area of triangle } ABC}{\text{radius of inscribed circle}}$ will be
 - A. x+5
 - B. x+10
 - C. 2x+5
 - D. 2x + 10

Page 12 of 16

- If $\sin(2\pi + m\alpha) = \sin[(k-1)\alpha]$, then the value of (k-1) will be 37.
 - A.
 - B. m
 - C. $2m\pi$
 - $2\pi + m$ D.
- The maximum value of $\frac{-1}{5+2\sin(2m+\beta)}$ is equal to 38. The range of $y = \sin \frac{\theta}{4}$ is $A. \quad -\frac{1}{4} \le y \le \frac{1}{4}$ $3. \quad -\frac{1}{2} \le y \le \frac{1}{2}$ $-1 \le y \le 1$ $-2 \le y \le 2$
- 39.
- 40.